MATH50003 Week5

Table of Contents

Matrix Norms

Induced Norms:

\(\|A \|_{X → Y} := \sup_{𝐯 : \|𝐯\|_X=1} \|A 𝐯\|_Y\)
if only $X$ then it’s to itself.

Common Results

  • 1-Norm
\[||A||_1 = \max_{\textbf{columns}} ||\mathbf{a_j}||_1\]
  • 2-Norm
\[||A||_2 = \sigma_1\]
  • the maximal singular value, and if $A$ invertible
\[||A^{-1}|| = \sigma_n^{-1}\]
  • $\mathbf{\infty}$-Norm
\[||A||_{\infty} = \max_{\textbf{rows}} ||\mathbf{a_j}||_1\] \[||A||_{1 \to \infty} = \max |a_{i,j}|\]
  • the maximal entry, (see week5 solution 2.1)

  • Frobenius Norm

\[||A||_F = \sqrt{tr(A^TA)}\] \[||QA||_F = ||A||_F\]
  • the Frobenius norm as the square root of sum of all entries squared and unaltered when multiplied by orthogonal matrix.
\[||A||_2 \leq ||A||_F \leq \sqrt{r} ||A||_2\]
  • $r$ being the rank of $A$

To check

m,n = 5,3
A = randn(m,n)
opnorm(A,1) == maximum(norm(A[:,j],1) for j = 1:n)
opnorm(A,Inf) == maximum(norm(A[k,:],1) for k = 1:m)
opnorm(A) # the 2-norm

SVD

Conditional Numbers

Goal:

  • To bound the relative error of matrix-vector multiplication.

  • Recall the operation with floating point \(x \otimes y = (1+\delta)(fl(x) \times fl(y))\)
  • A*x can be approximated by $(A + \delta A)\mathbf{x}$

  • So wish to estimate relative error as in \(\frac{||\delta \mathbf{Ax}||}{\mathbf{Ax}}\)

Step 1: dot product

\({\rm dot}(𝐱, 𝐲) = (𝐱 + δ𝐱)^⊤ 𝐲\) where \(|δ𝐱| ≤  {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} |𝐱 |,\)

Proved by a lemma and expanding out term by term, each has $\delta$ multiplication error and the addition error builds up

\([x_1 y_1 (1+\delta_1) + x_2 y_2 (1+\delta_2)](1+\gamma_2)\) \(\to [[\dots](1+\gamma_2)+x_3 y_3 (1+\delta_3)](1+\gamma_3) \to \cdots\)
which eventually becomes

\(\sum x_j y_j (1+\theta_j) = \sum x_j y_j + \sum \theta_j x_j y_j\)
So the error vector $\delta x$ is

\[\mathbf{\delta x} = \begin{pmatrix} x_1 \theta_1 \\ x_2 \theta_2 \\ \vdots \\ x_m \theta_m \end{pmatrix}\]

Step 2: matrix-vector

Note that
\({\rm mul}(A, 𝐱) = \begin{pmatrix} {\rm dot}(A[1,:], \mathbf{x})\\ {\rm dot}(A[2,:], \mathbf{x})\\ \vdots \\ {\rm dot}(A[m,:], \mathbf{x})\\ \end{pmatrix}\) So result in step1 naturally extends.

Taken from notes \({\rm mul}(A, 𝐱) = (A + δA) 𝐱\) where \(|δA| ≤ {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} |A|.\) Therefore

Result

\[\begin{aligned} \|δA\|_1 &≤  {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_1 \\ \|δA\|_2 &≤  {\sqrt{\min(m,n)} n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_2 \\ \|δA\|_∞ &≤  {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_∞ \end{aligned}\]

Use the Condition Numbers

\[\frac{||\delta \mathbf{Ax}||}{\mathbf{Ax}} \leq \kappa(\mathbf{A}) \ \varepsilon\]

where for a square matrix $A$, the condition number in $p$-norm is
\(κ_p(A) := \| A \|_p \| A^{-1} \|_p\) with the $2$-norm: \(κ_2(A) = {σ_1 \over σ_n}.\)

The bound is proved by considering $\mathbf{y} = \mathbf{Ax}$, so

\[\frac{||x||}{||Ax||} \leq ||A^{-1}||\]

thus

\[\frac{||x||}{||Ax||} \frac{||\delta A x||}{||x||} \leq ||\delta A|| \ ||A^{-1}|| \leq \kappa \frac{||\delta A||}{||A||}\]
MATH50003 Week6 MATH50003 Week4