MATH50003 Week5
Table of Contents
Matrix Norms
Induced Norms:
\(\|A \|_{X → Y} := \sup_{𝐯 : \|𝐯\|_X=1} \|A 𝐯\|_Y\)
if only $X$ then it’s to itself.
Common Results
- 1-Norm
- 2-Norm
- the maximal singular value, and if $A$ invertible
- $\mathbf{\infty}$-Norm
-
the maximal entry, (see week5 solution 2.1)
-
Frobenius Norm
- the Frobenius norm as the square root of sum of all entries squared and unaltered when multiplied by orthogonal matrix.
- $r$ being the rank of $A$
To check
m,n = 5,3
A = randn(m,n)
opnorm(A,1) == maximum(norm(A[:,j],1) for j = 1:n)
opnorm(A,Inf) == maximum(norm(A[k,:],1) for k = 1:m)
opnorm(A) # the 2-norm
SVD
Conditional Numbers
Goal:
-
To bound the relative error of matrix-vector multiplication.
- Recall the operation with floating point \(x \otimes y = (1+\delta)(fl(x) \times fl(y))\)
-
A*x
can be approximated by $(A + \delta A)\mathbf{x}$ - So wish to estimate relative error as in \(\frac{||\delta \mathbf{Ax}||}{\mathbf{Ax}}\)
Step 1: dot product
\({\rm dot}(𝐱, 𝐲) = (𝐱 + δ𝐱)^⊤ 𝐲\) where \(|δ𝐱| ≤ {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} |𝐱 |,\)
Proved by a lemma and expanding out term by term, each has $\delta$ multiplication error and the addition error builds up
\([x_1 y_1 (1+\delta_1) + x_2 y_2 (1+\delta_2)](1+\gamma_2)\)
\(\to [[\dots](1+\gamma_2)+x_3 y_3 (1+\delta_3)](1+\gamma_3) \to \cdots\)
which eventually becomes
\(\sum x_j y_j (1+\theta_j) = \sum x_j y_j + \sum \theta_j x_j y_j\)
So the error vector $\delta x$ is
Step 2: matrix-vector
Note that
\({\rm mul}(A, 𝐱) = \begin{pmatrix}
{\rm dot}(A[1,:], \mathbf{x})\\
{\rm dot}(A[2,:], \mathbf{x})\\
\vdots \\
{\rm dot}(A[m,:], \mathbf{x})\\
\end{pmatrix}\)
So result in step1 naturally extends.
Taken from notes \({\rm mul}(A, 𝐱) = (A + δA) 𝐱\) where \(|δA| ≤ {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} |A|.\) Therefore
Result
\[\begin{aligned} \|δA\|_1 &≤ {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_1 \\ \|δA\|_2 &≤ {\sqrt{\min(m,n)} n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_2 \\ \|δA\|_∞ &≤ {n ϵ_{\rm m} \over 2-nϵ_{\rm m}} \|A \|_∞ \end{aligned}\]Use the Condition Numbers
\[\frac{||\delta \mathbf{Ax}||}{\mathbf{Ax}} \leq \kappa(\mathbf{A}) \ \varepsilon\]where for a square matrix $A$, the condition number in $p$-norm is
\(κ_p(A) := \| A \|_p \| A^{-1} \|_p\)
with the $2$-norm:
\(κ_2(A) = {σ_1 \over σ_n}.\)
The bound is proved by considering $\mathbf{y} = \mathbf{Ax}$, so
\[\frac{||x||}{||Ax||} \leq ||A^{-1}||\]thus
\[\frac{||x||}{||Ax||} \frac{||\delta A x||}{||x||} \leq ||\delta A|| \ ||A^{-1}|| \leq \kappa \frac{||\delta A||}{||A||}\]