MATH50003 Week 8&9
Table of Contents
Orthogonal Polynomials
Motivation
Wish to approximate a function more easily using polynomials. Functions like $\frac{1}{25x^2+1}$ cannot be approximated by Taylor inside the unit disk, so we need alternatives.
See the blog on Chebyshev Polynomials for more.
Definition
Orthogonal polynomials are determined by graded basis and inner product (w/ weight).
Graded Basis
\[\{p_0(x), p_1(x), \cdots, \}\]-
Each $p_k(x)$ has degree exactly $k$
-
Unique coefficients $k_n^{(j)}$’s for $p_n(x)=\sum_{j=0}^n k_n^{(j)}x^j$
-
Note when this is finite then exactly the basis.
Inner Product determined by $w(x)$
Defined for positive weight $w(x)>0$ on interval $(a,b)$
\[\langle f,g \rangle:=\int_a^b f(x)g(x)w(x)dx\]Existence and Uniqueness
Existence
Given weight $w(x)$, can construct orthogonal polynomials from ${1,x,x^2,…}$ by Gram-Schmidt.
Uniqueness
Given weight $w(x)$ and the constructed orthogonal polynomials ${p_0(x), p_1(x),\dots}$, the following are equivalent.
-
$\deg \ p(x) =n$ and $\langle p, r \rangle=0$ for all $r(x)$ with degree less than $n$.
-
$p(x)=cp_n(x)$ for some constant $c$.
This shows that orthogonal polynomials are uniquely determined by the coefficients $k_n$ and the weight.
In particular, monic orthogonal polynomials are unique.
Thus, to prove some function is some orthogonal polynomial $T_n(x)$, it suffices to check
-
$f(x)$ is polynomial
-
$f(x)$ is orthogonal to all polys of lower degree
-
$f(x)$ has the same leading coefficient as $T_n(x)$
3-term Recurrence
\[\begin{aligned} xp_0(x)&=a_0p_0(x)+b_0p_1(x) \\ xp_n(x)&=c_{n-1}p_{n-1}(x)+a_np_n(x)+b_np_{n+1}(x) \end{aligned}\]It follows that if the previous term $p_n(x)$ is monic, then $p_{n+1}(x)$ is also monic.
Common Orthogonal Polynomials
Chebyshev 1st
\[\begin{aligned} T_0(x) &= 1, \\ T_n(x) &= 2^{n-1} x^n + O(x^{n-1}) \end{aligned}\]Weight:
\[w(x) = 1/ \sqrt{1-x^2} \qquad x \in [-1,1]\]Normalization Constant
\[\begin{aligned} q_0(x)&:\frac{1}{\sqrt{\pi}} \\ q_k(x)&:\sqrt{\frac{2}{\pi}} \end{aligned}\]Alternative:
\[T_n(x)=\cos(n \arccos x)\]3-term Recurrence:
\[\begin{aligned} xT_0(x)&=T_1(x) \\ xT_n(x)&=\frac{T_{n-1}(x)+T_{n+1}(x)}{2} \end{aligned}\]First Few:
\[\begin{aligned} T_0(x)&=1 \\ T_1(x)&=x \\ T_2(x)&=2x^2-1 \\ T_3(x)&=4x^3-3x \\ T_4(x)&=8x^4-8x^2+1 \\ \end{aligned}\]Roots:
\[\begin{aligned} x_j = \cos(\theta_j)=\cos(\frac{\pi (k-1/2)}{n}) \end{aligned}\]Chebyshev 2nd
\[\begin{aligned} U_0(x) &= 1, \\ U_n(x) &= 2^{n} x^n + O(x^{n-1}) \end{aligned}\]Weight:
\[w(x) = \sqrt{1-x^2} \qquad x \in [-1,1]\]Normalization Constant
\[\begin{aligned} q_k(x)&:\sqrt{\frac{2}{\pi}} \end{aligned}\]Alternative:
\[U_n(x)=\frac{\sin[(n+1) (\arccos x)]}{\sin (\arccos x)}\]3-term Recurrence:
\[\begin{aligned} xU_0(x)&=U_1(x)/2 \\ xU_n(x)&=\frac{U_{n-1}(x)+U_{n+1}(x)}{2} \end{aligned}\]First Few:
\[\begin{aligned} U_0(x)&=1 \\ U_1(x)&=2x \\ U_2(x)&=4x^2-1 \\ U_3(x)&=8x^3-4x \\ U_4(x)&=16x^4-12x^2+1 \\ \end{aligned}\]Roots:
\[x_k = \cos(\frac{k\pi}{n+1})\]Legendre
\[\begin{aligned} P_0(x)&=1 \\ P_n(x)&=\sum_{k=0}^{n} \frac{1}{2^k}\binom{2n}{n} x^n \end{aligned}\]Weight:
\[w(x) = 1 \qquad x \in [-1,1]\]Alternative:
(Rodriguez Formula)
3-term Recurrence:
\[\begin{aligned} xP_0(x)&=P_1(x) \\ (2n+1)xP_n(x)&=nP_{n-1}(x)+(n+1)P_{n+1}(x) \end{aligned}\]First Few
\[\begin{aligned} P_0(x)&=1 \\ P_1(x)&=x \\ P_2(x)&=\frac{1}{2}(3x^2-1) \\ P_3(x)&=\frac{1}{2}(5x^3-3x) \\ P_4(x)&=\frac{1}{8}(35x^4-30x^2+3) \\ \end{aligned}\]A few comments
-
The $n$ roots of the Legendre polynomial are all real and in the interval $[-1,1]$
-
The choice of scaling (leading coefficient) makes $P_k(1)=1$
Hermite
\[\begin{aligned} H_0(x)&=1 \\ H_n(x)&=2^nx^n+O(x^{n-1}) \end{aligned}\]Weight:
\[w(x) = \exp(-x^2) \qquad x \in (-∞,∞)\]Alternative:
(Rodriguez Formula)
3-term Recurrence:
\[\begin{aligned} xH_0(x)&=H_1(x)/2 \\ xH_n(x)&=-nH_{n-1}(x) + H_{n+1}(x)/2 \end{aligned}\]First Few
\[\begin{aligned} H_0(x)&=1 \\ H_1(x)&=2x \\ H_2(x)&=4x^2-2 \\ H_3(x)&=8x^3-12x \\ H_4(x)&=16x^4-48x^2+12 \\ \end{aligned}\]Jacobi Matrices
Column-wise representation for the 3-term recurrence.
\[X = \begin{bmatrix} a_0 & c_0 \\ b_0 & a_1 & c_1\\ & b_1 & a_2 & ⋱ \\ && ⋱ & ⋱ \end{bmatrix}\]So
\[x[p_0 |p_1|p_2|\dots]=[a_0p_0+b_0p_1|c_0p_0+a_1p_1+b_1p_2|\dots]\\ =[p_0 |p_1|p_2|\dots]X\]When the polynomials are orthonormal then $X=X^T$